kiwi.modules.token_embeddings
TokenEmbeddings
Base class for all neural network modules.
kiwi.modules.token_embeddings.
Bases: torch.nn.Module
torch.nn.Module
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.
to()
Config
Bases: kiwi.utils.io.BaseConfig
kiwi.utils.io.BaseConfig
Base class for all pydantic configs. Used to configure base behaviour of configs.
dim
freeze
dropout
use_position_embeddings
max_position_embeddings
sparse_embeddings
scale_embeddings
input_layer_norm
num_embeddings
size
forward
kiwi.modules.sentence_level_output
kiwi.modules.word_level_output