kiwi.systems.decoders.estimator
EstimatorDecoder
Base class for all neural network modules.
kiwi.systems.decoders.estimator.
logger
Bases: kiwi.systems._meta_module.MetaModule
kiwi.systems._meta_module.MetaModule
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.
to()
Config
Bases: kiwi.utils.io.BaseConfig
kiwi.utils.io.BaseConfig
Base class for all pydantic configs. Used to configure base behaviour of configs.
hidden_size
Size of hidden layers in LSTM
rnn_layers
Layers in PredictorEstimator RNN
use_mlp
Pass the PredictorEstimator input through a linear layer reducing dimensionality before RNN.
dropout
use_v0_buggy_strategy
The Predictor implementation in Kiwi<=0.3.4 had a bug in applying the LSTM to encode source (it used lengths too short by 2) and in reversing the target embeddings for applying the backward LSTM (also short by 2). This flag is set to true when loading a saved model from those versions.
dropout_on_rnns
size
forward
kiwi.systems.decoders
kiwi.systems.decoders.linear