kiwi.systems.encoders.quetch
InputEmbeddingsConfig
Embeddings size for each input field, if they are not loaded.
QUETCHEncoder
Base class for all neural network modules.
kiwi.systems.encoders.quetch.
logger
Bases: kiwi.utils.io.BaseConfig
kiwi.utils.io.BaseConfig
source
target
source_pos
target_pos
Bases: kiwi.systems._meta_module.MetaModule
kiwi.systems._meta_module.MetaModule
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.
to()
Config
Base class for all pydantic configs. Used to configure base behaviour of configs.
window_size
Size of sliding window.
embeddings
input_data_encoders
size
forward
kiwi.systems.encoders.predictor
kiwi.systems.encoders.xlm