kiwi.systems.outputs.translation_language_model
MaskedWordOutput
Base class for all neural network modules.
TLMOutputs
kiwi.systems.outputs.translation_language_model.
Bases: torch.nn.Module
torch.nn.Module
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.
to()
forward
Bases: kiwi.systems._meta_module.MetaModule
kiwi.systems._meta_module.MetaModule
Config
Bases: kiwi.utils.io.BaseConfig
kiwi.utils.io.BaseConfig
Base class for all pydantic configs. Used to configure base behaviour of configs.
fine_tune
Continue training an encoder on the post-edited text. Recommended if you have access to PE. Requires setting system.data.train.input.pe, system.data.valid.input.pe
loss
metrics_step
metrics_end
metrics
labels
kiwi.systems.outputs.quality_estimation
kiwi.systems._meta_module