Train Interface¶
Note: Args that start with ‘--’ (eg. --save-config) can also be set in a config file (specified via --config). The config file uses YAML syntax and must represent a YAML ‘mapping’ (for details, see http://learn.getgrav.org/advanced/yaml). If an arg is specified in more than one place, then command line values override config file values which override defaults.
For generic options see: here
Model specific options can be seen here:
Usage examples of the python api.
Run:
import kiwi
train_predest_config = 'experiments/examples/train_predest.yaml'
kiwi.train(train_predest_config)
train_nuqe_config = 'experiments/examples/train_nuqe.yaml'
kiwi.train(train_nuqe_config)
Usage example of the cli api.
Run:
kiwi train --config {model_config_file} [OPTS]
usage: kiwi train [-h] [--epochs EPOCHS] [--train-batch-size TRAIN_BATCH_SIZE]
[--valid-batch-size VALID_BATCH_SIZE]
[--optimizer {sgd,adagrad,adadelta,adam,sparseadam}]
[--learning-rate LEARNING_RATE]
[--learning-rate-decay LEARNING_RATE_DECAY]
[--learning-rate-decay-start LEARNING_RATE_DECAY_START]
[--checkpoint-validation-steps CHECKPOINT_VALIDATION_STEPS]
[--checkpoint-save [CHECKPOINT_SAVE]]
[--checkpoint-keep-only-best CHECKPOINT_KEEP_ONLY_BEST]
[--checkpoint-early-stop-patience CHECKPOINT_EARLY_STOP_PATIENCE]
[--resume [RESUME]]
training¶
--epochs | Number of epochs for training. Default: 50 |
--train-batch-size | |
Maximum batch size for training. Default: 64 | |
--valid-batch-size | |
Maximum batch size for evaluating. Default: 64 |
training-optimization¶
--optimizer | Possible choices: sgd, adagrad, adadelta, adam, sparseadam Optimization method. Default: “adam” |
--learning-rate | |
Starting learning rate. Recommended settings: sgd = 1, adagrad = 0.1, adadelta = 1, adam = 0.001 Default: 1.0 | |
--learning-rate-decay | |
Decay learning rate by this factor. Default: 1.0 | |
--learning-rate-decay-start | |
Start decay after this epoch. Default: 0 |
training-save-load¶
--checkpoint-validation-steps | |
Perform validation every X training batches. Saves model if checkpoint-save is true. Default: 0 | |
--checkpoint-save | |
Save a training snapshot when validation is run. If false it will never save the model. Default: True | |
--checkpoint-keep-only-best | |
Keep only n best models according to main metric (F1Mult by default); 0 will keep all. Default: 1 | |
--checkpoint-early-stop-patience | |
Stop training if evaluation metrics do not improve after X validations; 0 disables this. Default: 0 | |
--resume | Resume training a previous run. If –output-dir is not none, Kiwi will load from a checkpoint folder in that location. If –output-dir is not specified, then the –run-uuid option must be set. Files are then searched under the “runs” directory. If not found, they are downloaded from the MLflow server (check the –mlflow-tracking-uri option). Default: False |