Linear training

usage: kiwi train [-h] [--train-source TRAIN_SOURCE]
                  [--train-target TRAIN_TARGET]
                  [--train-alignments TRAIN_ALIGNMENTS]
                  [--train-source-tags TRAIN_SOURCE_TAGS]
                  [--train-target-tags TRAIN_TARGET_TAGS]
                  [--train-source-pos TRAIN_SOURCE_POS]
                  [--train-target-pos TRAIN_TARGET_POS]
                  [--train-target-parse TRAIN_TARGET_PARSE]
                  [--train-target-ngram TRAIN_TARGET_NGRAM]
                  [--train-target-stacked TRAIN_TARGET_STACKED]
                  [--valid-source VALID_SOURCE] [--valid-target VALID_TARGET]
                  [--valid-alignments VALID_ALIGNMENTS]
                  [--valid-source-tags VALID_SOURCE_TAGS]
                  [--valid-target-tags VALID_TARGET_TAGS]
                  [--valid-source-pos VALID_SOURCE_POS]
                  [--valid-target-pos VALID_TARGET_POS]
                  [--valid-target-parse VALID_TARGET_PARSE]
                  [--valid-target-ngram VALID_TARGET_NGRAM]
                  [--valid-target-stacked VALID_TARGET_STACKED]
                  [--source-vocab-size SOURCE_VOCAB_SIZE]
                  [--target-vocab-size TARGET_VOCAB_SIZE]
                  [--source-vocab-min-frequency SOURCE_VOCAB_MIN_FREQUENCY]
                  [--target-vocab-min-frequency TARGET_VOCAB_MIN_FREQUENCY]
                  [--use-basic-features-only USE_BASIC_FEATURES_ONLY]
                  [--use-bigrams USE_BIGRAMS]
                  [--use-simple-bigram-features USE_SIMPLE_BIGRAM_FEATURES]
                  [--training-algorithm TRAINING_ALGORITHM]
                  [--regularization-constant REGULARIZATION_CONSTANT]
                  [--cost-false-positives COST_FALSE_POSITIVES]
                  [--cost-false-negatives COST_FALSE_NEGATIVES]
                  [--evaluation-metric EVALUATION_METRIC]

data

--train-source Path to training source file
--train-target Path to training target file
--train-alignments
 Path to train alignments between source and target.
--train-source-tags
 Path to validation label file for source (WMT18 format)
--train-target-tags
 Path to validation label file for target
--train-source-pos
 Path to training PoS tags file for source
--train-target-pos
 Path to training PoS tags file for target
--train-target-parse
 Path to training dependency parsing file for target (tabular format)
--train-target-ngram
 Path to training highest order ngram file for target (tabular format)
--train-target-stacked
 Path to training stacked predictions file for target (tabular format)

validation data

--valid-source Path to validation source file
--valid-target Path to validation target file
--valid-alignments
 Path to valid alignments between source and target.
--valid-source-tags
 Path to validation label file for source (WMT18 format)
--valid-target-tags
 Path to validation label file for target
--valid-source-pos
 Path to training PoS tags file for source
--valid-target-pos
 Path to training PoS tags file for target
--valid-target-parse
 Path to validation dependency parsing file for target (tabular format)
--valid-target-ngram
 Path to validation highest order ngram file for target (tabular format)
--valid-target-stacked
 Path to validation stacked predictions file for target (tabular format)

vocabulary options

--source-vocab-size
 Size of the source vocabulary.
--target-vocab-size
 Size of the target vocabulary.
--source-vocab-min-frequency
 

Min word frequency for source vocabulary.

Default: 1

--target-vocab-min-frequency
 

Min word frequency for target vocabulary.

Default: 1

linear

Linear Quality Estimation

--use-basic-features-only
 

1 for using only basic features (words).

Default: 0

--use-bigrams

1 for using bigram features (i.e. a CRF-like model).

Default: 1

--use-simple-bigram-features
 

1 for using only label indicators as bigram features.

Default: 0

--training-algorithm
 

Algorithm for training the model (svm_mira, svm_sgd, perceptron).

Default: “svm_mira”

--regularization-constant
 

L2 regularization constant.

Default: 0.001

--cost-false-positives
 

Cost for false positives (svm_mira and svm_sgd only).

Default: 0.2

--cost-false-negatives
 

Cost for false negatives (svm_mira and svm_sgd only).

Default: 0.8

--evaluation-metric
 

Evaluation metric (f1_mult or f1_bad).

Default: “f1_mult”