Using pre-trained models

We provide the models used in our submission to Codalab together with a script that ensembles their predictions over the dev set. For reference, these are our results (which you can reproduce by following the steps below)

Model
En-De SMT
En-De NMT
MT gaps source r MT gaps source r
QUETCH 39.90 17.10 36.10 48.32 51.31 29.18 13.26 28.91 42.84 49.59
NuQE 50.04 35.53 42.08 59.62 60.89 32.49 15.01 30.19 43.41 50.87
APE-QE 55.12 47.04 51.11 58.01 60.58 37.60 21.78 34.46 35.23 38.88
Pred-Est 57.29 43.68 33.02 70.95 74.49 39.25 21.54 29.52 50.18 55.66
Stacked 62.40         43.88        
Ensembled 61.33 53.05 51.11 72.89 76.37 43.04 24.74 34.46 52.34 56.98

Reproducing benchmark values

Go to WMT18 Download and follow the instructions to download a zip archive with the development data. Then, open a shell and navigate to the directory where you downloaded the data. Ensure that OpenKiwi is installed in your environment, and run the following command(s) to download and evaluate our models:

(SMT dataset):

wget https://github.com/Unbabel/OpenKiwi/releases/download/0.1.1/en_de.smt_models.zip && unzip -n en_de.smt_models.zip && ./run_smt.sh

(NMT dataset):

wget https://github.com/Unbabel/OpenKiwi/releases/download/0.1.1/en_de.nmt_models.zip && unzip -n en_de.nmt_models.zip && ./run_nmt.sh