Source code for kiwi.data.fieldsets.predictor_estimator

#  OpenKiwi: Open-Source Machine Translation Quality Estimation
#  Copyright (C) 2019 Unbabel <openkiwi@unbabel.com>
#
#  This program is free software: you can redistribute it and/or modify
#  it under the terms of the GNU Affero General Public License as published
#  by the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU Affero General Public License for more details.
#
#  You should have received a copy of the GNU Affero General Public License
#  along with this program.  If not, see <https://www.gnu.org/licenses/>.
#

import torch
from torchtext import data

from kiwi import constants as const
from kiwi.data import utils
from kiwi.data.fields.sequence_labels_field import SequenceLabelsField
from kiwi.data.fieldsets.fieldset import Fieldset
from kiwi.data.tokenizers import tokenizer


[docs]def build_text_field(): return data.Field( tokenize=tokenizer, init_token=const.START, batch_first=True, eos_token=const.STOP, pad_token=const.PAD, unk_token=const.UNK, )
[docs]def build_label_field(postprocessing=None): return SequenceLabelsField( classes=const.LABELS, tokenize=tokenizer, pad_token=const.PAD, batch_first=True, postprocessing=postprocessing, )
[docs]def build_fieldset(wmt18_format=False): target_field = build_text_field() source_field = build_text_field() source_vocab_options = dict( min_freq='source_vocab_min_frequency', max_size='source_vocab_size' ) target_vocab_options = dict( min_freq='target_vocab_min_frequency', max_size='target_vocab_size' ) fieldset = Fieldset() fieldset.add( name=const.SOURCE, field=source_field, file_option_suffix='_source', required=Fieldset.TRAIN, vocab_options=source_vocab_options, ) fieldset.add( name=const.TARGET, field=target_field, file_option_suffix='_target', required=Fieldset.TRAIN, vocab_options=target_vocab_options, ) fieldset.add( name=const.PE, field=target_field, file_option_suffix='_pe', required=None, vocab_options=target_vocab_options, ) post_pipe_target = data.Pipeline(utils.project) if wmt18_format: post_pipe_gaps = data.Pipeline(utils.wmt18_to_gaps) post_pipe_target = data.Pipeline(utils.wmt18_to_target) fieldset.add( name=const.GAP_TAGS, field=build_label_field(post_pipe_gaps), file_option_suffix='_target_tags', required=None, ) fieldset.add( name=const.TARGET_TAGS, field=build_label_field(post_pipe_target), file_option_suffix='_target_tags', required=None, ) fieldset.add( name=const.SOURCE_TAGS, field=build_label_field(), file_option_suffix='_source_tags', required=None, ) fieldset.add( name=const.SENTENCE_SCORES, field=data.Field( sequential=False, use_vocab=False, dtype=torch.float32 ), file_option_suffix='_sentence_scores', required=None, ) pipe = data.Pipeline(utils.hter_to_binary) fieldset.add( name=const.BINARY, field=data.Field( sequential=False, use_vocab=False, dtype=torch.long, preprocessing=pipe, ), file_option_suffix='_sentence_scores', required=None, ) return fieldset